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The steady-state distribution function is obtained for electrons initially emitted from a point source into a 
neutral gas and which subsequently drift under the influence of a uniform dc electric field while undergoing 
elastic collisions with the gas atoms. The usual approximations, regarding the distribution function as 
almost spherical in velocity space, and regarding the fractional energy gain or loss by an electron upon col
lision as small are retained. However, the terms in the Boltzmann transport equation involving spatial 
derivatives of the distribution, which are usually assumed small in comparison to the field and collision 
terms, are treated exactly. The distribution function is given as a sum of energy modes, each of which de
cay with distance from the source. The lowest of these modes is the far-distant distribution, while the 
higher ones, which decrease more rapidly with distance describe the decay of the initial source energy dis
tribution. The complete distribution is obtained in terms of known functions in the case of an energy-
independent collision frequency, whereas in the energy-independent cross-section case, only the lowest 
mode is obtained. The far-distant part of the distribution function is compared with the usual approximate 
expression which is obtained when the gradient terms are considered small and which is expressed as the 
density times a normalized energy function. It is shown, that when the gradient terms are correctly con
sidered, the far-distant distribution in energy becomes position-dependent. Furthermore, the deviation from 
the approximate theory becomes larger, the further the electrons are off the geometrical axis. This position 
dependence is most important when the electron energy is large in comparison to thermal energies. The 
interpretation of Townsend method for the determination of the ratio of the diffusion coefficient to the 
mobility, D/p, is re-examined on the basis of this more exact theory. It is shown that the error in D/fx that 
results from using the conventional interpretation of this method under typical experimental conditions is 
never more than about 20%. 

I. INTRODUCTION 

IT is usually assumed that electrons which drift and 
diffuse through a gas under the influence of both 

uniform electric fields and electron density gradients 
have a distribution in energy that is independent of 
position. This means that the distribution is assumed 
to be unaffected by the presence of gradients in the 
electron density and is taken to depend only on the field 
strength and, of course, on the pressure and variety of 
the gas. A direct consequence of this is that the electrons 
can be characterized by a diffusion coefficient, D} and 
a mobility, /*, which are independent of position. It is 
this aspect that has been the basis for the interpretation 
of many experiments concerned with the transport 
properties of electrons in gases, such as the Townsend-
type experiment for the measurement of1'2 D/fj, and the 
time of flight measurements of M-1,3 In turn, the analysis 
of the measured transport coefficients from these 
experiments in terms of electron-atom collision cross 
sections have also been dependent on this assumption.1'4 

The theoretical justification of this assumption must 
come from the solution of the Boltzmann transport 
equation that is appropriate to electrons under the 

* This work was supported in part by the Advanced Research 
Projects Agency through the U. S. Office of Naval Research. 

1 L . G. H. Huxley and R. W. Crompton, in Atomic and Molecular 
Processes, edited by D. R. Bates (Academic Press Inc., New York, 
1962), Chap. 10. 

2 R. W. Warren and J. H. Parker, Jr., Phys. Rev. 128, 2661 
(1962). 

3 J. L. Pack and A. V. Phelps, Phys. Rev. 121, 798 (1961). 
4 L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962). 

influence of both electric fields and electron density 
gradients. Allis and Allen5 have derived the basic 
equations for electrons under these conditions. These 
authors did indicate certain formal aspects of the 
general solution as well as pointing out, qualitatively, 
the approximate nature of the conventional assumption; 
however, they did not discuss any specific case fully. 

It is the purpose of the present study to (1) investi
gate the conditions under which the effect of electron 
density gradients on the distribution in energy can be 
neglected and (2) to obtain solutions of the Boltzmann 
equation which will demonstrate the specific effects 
introduced by the gradients. The geometry used in this 
study, which is one of the simplest that can serve to 
illustrate these effects, is the point source of electrons 
in an infinite uniform field region. Also for reasons of 
simplicity, the collisions between the electrons and gas 
atoms are taken to be elastic. In Sec. II the Boltzmann 
equation for the case of an energy-independent collision 
frequency is given and the approximations involved in 
assuming the distribution in energy to be position-
independent are examined. Also a criterion is developed 
for the conditions under which the effect of electron gra
dients can be neglected. In Sec. I l l the Boltzmann 
equation, as given in Sec. II, is solved. The resulting 
solution yields not only the limiting distribution at far 
distances from the source but also the higher modes 
which describe the decay of the initial distribution into 
this far-distant part. The far-distance distribution is 

«W. P. Allis and H. W. Allen, Phys. Rev. 52, 703 (1937). 
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then compared with the usual position-independent dis
tribution. In Sec. IV the Boltzmann equation for the 
case of an energy-independent cross section is given and 
an approximate expression is obtained for the distribu
tion at far distance from the source. This expression is 
compared with that obtained for constant collision 
frequency. In Sec. V the Townsend D//J, experiment is 
examined on the basis of this more exact theory and 
the errors that result from using the conventional 
interpretation of this experiment are discussed. 

II. GENERAL CONSIDERATIONS 

The average properties of electrons moving through 
a gas, e.g., electron density, current density, mean 
energy, etc., can be predicted once the electron distri
bution function, / (r ,v) , is known. The significance of 
this function is that /(r,v)drdv denotes the number of 
electrons at position r in dt and with velocity v in the 
range dv. The distribution function in turn satisfies 
an equation of continuity in position and velocity space, 
i.e., the Boltzmann transport equation. This equation 
describes the balance that must exist in steady state 
between the rate at which electrons enter and leave a 
given element of volume, dxdy in velocity and position 
space. The flow in position space results from the 
velocity of the electrons while in velocity space it 
results from their acceleration due both to collisions 
with the gas atoms and to the applied field. 

There are several approximations commonly made 
in order to simplify the integral-differential Boltzmann 
equation when applied to electrons. The first is that the 
distribution function is almost spherically symmetric in 
velocity space and therefore can be adequately repre
sented by the first two terms of an expansion in spherical 
harmonics involving the direction of the velocity. That 
is, /(r,v) can be written as6 

f(r,v) = f(r,v)+Hr,v)-(v), 

where v is the unit velocity vector. The second is that 
the fractional energy gain or loss by an electron upon 
colliding with a gas atom is small. This is justified in 
the case of elastic collisions, to which the present paper 
is restricted, because of the small electron to atom mass 
ratio. With these approximations the Boltzmann 
equation reduces to two partial differential equations. 
The present discussion will, in addition, be restricted 
to uniform dc electric fields and to a constant-collision-
frequency gas. While this latter restriction will be 
relaxed further on to include the case of constant cross 
section, for the present the case of constant collision 
frequency can serve best to illustrate the important 
features of the problem. 

When the above approximations and restrictions are 

6 The detailed derivation of these equations along with a 
discussion of the approximations used in obtaining them is given 
by W. P. Allis, in Handbuch der Physik, edited by S. Flugge 
(Springer-Verlag, Berlin, 1956), Vol. 21. Also see T. Holstein, 
Phys. Rev. 70, 367 (1946). 

taken into account the equations that result for f° and 
f1 are6 

2mv d I 

Me112 del \ de/J Am/ J 3\m. 

2 \ 1 / 2 d 

and 

/ 2 V * d A 
-fcfif — ) - ( € * • * ) = - S ( r , € ) (1) 

\ em/ de 

d/°> 
"fl+(~") (Vf°+eEk—)==0* (2) 

Here the electric field E is given by E = — kE, where k 
is the unit vector in the z direction, v is the momentum 
transfer collision frequency, e denotes the kinetic energy 
of the electrons, m and M are the mass of the electron 
and the atom respectively, T is the gas temperature, 
and 6,(r,e) is the electron source term. 

Qualitatively these equations can be explained as 
follows: We have assumed that /(r,v) can be represented 
by the term, / ° , that is spherically symmetric in velocity 
plus the small nonspherical term, il-v. Therefore, the 
Boltzmann equation, which balances the rates at which 
electrons enter and leave drdv, also breaks into two 
parts, the first, Eq. (1), which balances the spherical 
rates and the second, Eq. (2), which balances the 
nonspherical rates. The first term in (2), which 
represents the effect of collisions in reducing the asym
metry in /(r ,v) , is balanced by the second and third 
terms which represent, respectively, the effect of 
diffusion and drift in increasing the asymmetry. The 
first two terms in (1) reflect, respectively, the fact that 
electrons can lose and gain energy as a result of collisions 
with the gas atoms. The third term represents the net 
flow of electrons into it with energy e that occurs when 
the asymmetrical part of / varies with position. The 
fourth term reflects the fact that the electrons can gain 
energy from the field and that this occurs only through 
the asymmetrical part of / . 

The equation that f° must satisfy is obtained by 
substituting f1 from (2) into (1) and is 

2mv d 

Melf2de 

r / M / eE\2\df 

L \ 3\mv//de 

\mv/ dz J 
+\MeE\ 

2eEe d2f 

2e 
+ V2/0 

3mv 

3mv dedz 

S(t,e). (3) 

When / ° is independent of position, i.e., when the 
electron density is uniform, the solution of (3) with 
5 = 0 is given by 

c o n s t X e x p j - e / [ . r + ^ ) 2 ] } . (4) 
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Under these conditions the balance, as represented by 
the first three terms of (3), is between the electrons 
losing energy from collisions and gaining energy from 
collision and from the field. When f° depends on position, 
the additional terms in (3) that involve the spatial 
gradient of f° appear. If these terms are assumed to be 
small in comparison to the collision terms and to the 
field term, then an approximate solution to (3) can be 
expressed as f°~n(r)F(e), where n(t) is the electron 
density, whose functional form is as yet undetermined, 
and F(e), which represents the distribution in energy, 
is given by (4). The equation that n(x) must satisfy is 
obtained by multiplying (3) by e1/2de and integrating 
over the complete energy range. The resulting equation, 
which is the familiar continuity of current equation, can 
be written, with 5 = 0 , as 

V-(DVn-tJ,Ekn) = 0, (5) 

where D and /z are given by 

8 7 r / 2 y ' 2 r~ ezl2 

£ = — ( - ) / —F(e)de, 
3m2\m/ Jo v 

and 

Sire/2 \1^2 r°° e*i2dF(e) 

3m\m) Jo v de 

A simple criterion can be obtained for conditions 
under which the gradient terms can be neglected in 
comparison to the field term or the collision terms. If 
the approximate form for / ° is assumed, i.e., 

f=n(r) e x p [ - e/(kT+l/B)l, (6) 

where B= (3/M)(mv/eE)2 and this is substituted into 
(3) along with the equation for V2n given by (5), then 
the relative magnitude of the various terms can be 
compared. For this case of constant collision frequency 
the last two terms on the left-hand side of (3) cancel. 
The ratio, (R, of the remaining gradient term to either 
the energy loss collision term or to the sum of the 
collision and field term representing energy gain can be 
expressed as 

In this equation €av denotes the average electron energy, 
%(kT+l/B), €T is the thermal energy of the gas, %kT, 
and ZV/x= (kT+l/B)/e. We see that if €av> eT (high-
field limit), the gradient terms can be neglected when 
the diffusion current in the field direction, D(dn/dz), 
is small in comparison to the drift current, fiEn. How
ever, as €av approaches eT (low-field limit) the gradient 
terms become less and less important for a given ratio 
of diffusion to drift current. 

The case of a point source in an infinite uniform field 
region can serve to illustrate these points for a specific 

geometry. The density for a point source is given by7 

n(r) oc (s2+p2)~1/2 e x p i — [*- (z2+p2)ll2l\ , (8) 
(2D J 

where z is the distance from the point source along the 
field direction and p is the cylindrical radius. When the 
density gradient to density ratio is obtained from this 
expression and is substituted into (7), the ratio of terms 
in the high-field limit (l/B>kT) becomes 

1 / 4€av \ 
(R=- l - c o s 0 cos20 ) , 

2 \ 3eEz / 

where 6 is the polar angle from the source. When the 
factor 4:e3lV/3eEz is small and the point of interest is 
near the axis (cos0=l), the gradient term can be 
neglected. However, for positions sufficiently off the 
axis (cos0< 1) and again with 4teav/3eEz< 1, the gradient 
term cannot be neglected under any circumstance. 

The extension of this type of argument to a constant 
cross-section gas is straightforward and probably the 
above conclusions are a reasonable guide for gases with 
a more complicated energy-dependent collision 
frequency. 

III. CONSTANT COLLISION FREQUENCY 

A. General Solution 

The equation for / ° , which is given by (3), can be 
rearranged to read 

dr / df° 1 df°\-\ 
e-3/2 I e 3 / 2 / y o + ( ^ r + 1 / J g ) _ + ) 

del \ de eEB dz / J 

1 d2f 1 MS(r,€) 
+ + - V2/°= , 

eEB dedz (eE)2B 2mve 

where B, as defined previously, is (3/M) (vtn/eE)2. I t is 
clear that because of the mixed derivatives in € and z 
the equation is not separable in these variables. How
ever, by changing to new independent variables that 
are, for convenience, made dimensionless, the equation 
can be put into a separable form. The new variables 
are defined as follows8: 

Be 

1+05 ' 

%=x— eEBz, 

R=eEBP, 

and with a = kTB. Then the differential equation 

7 L. G. H. Huxley, Phil. Mag. 30, 396 (1944). 
8 This type of transformation has been used previously by 

W. P. Allis and H. W. Allen, Ref. 5. 
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becomes 

^ r / d /° \ l d/° d2f° 
^-3/2_ a*/2(/0+ ) U + a 

dxl \ dx/J d£ d? 

where JQ(KR) is the zero-order Bessel function.9 In 
order to put (11) in a recognizable form let 

and 

+ (!+«)-
1 d / df\ i -MS 

R— = • -, (9) 

where V2 has been expressed in cylindrical coordinates 
since/0 is to be calculated under conditions of cylindrical 
symmetry. It should be pointed out that in the high-
field limit, i.e., when a<Cl, the new variable £ is simply 
proportional to the total electron energy, e—eEz. 
Since the equation separates in the variables % and £ 
and not in e and z, it would be a formidable task to 
satisfy boundary condition on a z plane. However, what 
can be obtained in a straightforward fashion are 
solutions for the case of volume sources in an unbounded 
region. Another case that can be simply treated, but 
will not be detailed in the present paper, is for volume 
sources in the presence of cylindrical boundaries parallel 
to the z axis and on which f° vanishes, e.g., a point 
source on the axis of a right cylinder with f° vanishing 
along the inside surface. However, the simplest geometry 
that can be used to illustrate the features of the distri
bution when the gradient terms are correctly considered 
is the point source emitting monoenergetic electrons 
in an unbounded region. Therefore, Eq. (9) is to be 
solved with S given, in terms of €, z and p, as 

i3=Kl-7 2 ) 

F=A(*)expC-i( l+T)*] . 

Then (11) becomes 

ePh dh 
x—+(t-r») i ( 7 - l ) A = 0 . 

dx2 dx 

The solution of interest is regular at the origin and is 

KKv)1*17*) • 
where F(a\c\z) is the confluent hypergeometric func
tion.9 Now Eq. (11) is an eigenvalue equation for 0 
(or 7). It is easily shown that the corresponding eigen-
functions are orthogonal with respect to the density 
function r(x) = xz/2ex, i.e., 

/ ; 
x3liexFyFydx=0 if y^y'. 

S(6,z,p) = 5(z)-
8(P) 5 (6 -6o ) 

xp (Vw)(2«/w)1/2 ' 
(10) 

This term represents one electron per second being 
emitted with energy eo from the point z=p=Q. 

The homogeneous form of Eq. (9) can be separated 
into the three ordinary differential equations, 

dr / dF(x)\~] 
x-*l2—\ ^ /2( F(x)+ ) \+I3F(X) = 0, (11) 

dxL \ dx / J 

The eigenvalues and eigenfunctions are found by 
selecting the set of 7^ which made the solution of (11) 
quadratically integrable and orthogonal with respect to 
the density function. By inspection of the asymptotic 
behavior of the confluent hypergeometric function,9 the 
allowed spectrum for 7 and the corresponding eigen
functions can be found. A part of the set is discrete with 

1 
Fi(x) = — exp[-Kl+70*]£z ( 1 / 2 )(Y^), 

Nt 

where Lj(1/2) is a Laguerre polynomial,9 

1 

and 

1 d / 

RdR\ 

dP(R)\ 
R )+K2P(R) = 0, (12) 

dR / 

d?Z(Q dZ{i) 
x + 

de d£ 

7i = , 

1+0 
1=0, 1, 2- • • 00 (positive integers), 

and with the normalization constant Ni given by9 

(i+f/)5/2(2J+f)r3(f+/) 

-(Z2(l+a)+/3)Z0:) = 0, (13) 
N?=-

l\ 

where K2 and fi are the constants of separation. The 
solutions for (12) and (13) that are of interest can be 
written down immediately as 

and 

Ztt) = exp 

P(R) = Jo(KR), 

- i ± [ i + M # 2 ( i - M + 0 ) ] 1 / 2 

2a •> ] • 

The rest of the set is continuous with 

F„(a?) = C „ e x p [ - K l + & ) * ] / ? ( i ( ^ ^ ) | i | ^ l 

where Cw is a normalization constant, y=ico and o> is a 
9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953), Chaps. 
5 and 6. 
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continuous variable in the range of 0 —> + °° • It will 
be assumed that this is a complete set. 

The solutions to Eqs. (11), (12), and (13), as given 
above, will now be used to build up the solution to 
Eq. (9). It is convenient first to find the Green's func
tion for (9), i.e., to find the function G{x£,R\x£ft) that 
satisfies the equation 

where the indicated summation is to be taken as a 
sum over the discrete spectrum of y plus an integral 
over the continuous part. When this expansion is 
substituted into (14) and the result is multiplied by 
r{x)Fy>{%) and integrated over x} the equation for A7 

is found to be 

^ - 3 / 2 1 tflll Q+ 

dxL \ 

dG\~\ dG d2G 
— )+—+«— 
dx/J d£ d £2 

1 d / 3G\ 
+ ( l+a) (R—) 

RdR\ BR/ 

= -B(x-£)5(S-$)8(R-R), (14) 

and then to use the expression9 

r _ rMS&iR)! . -
f(x&R)= / G(x&R\x,iR)\ Uxd&R (IS) 

J L 2mvx J 
to obtain the /° that satisfies (9) for a specific source 
term. Now the function G can be expanded in terms 
of the energy functions F7 as 

G^JlyAy(^R,lRyx)Fy(x), 

I d / dAy\ . ( l + a ) JR ) 
RdRX BR/ 

-PA7+ +a-

= -~r(x)Fy(x)d(R-R)8(£-%). 

Now Ay can be expressed as 

(16) 

A 
JO 

Uy(£,R,ix)Jo(KR)KdK. 

When this is substituted into (16) and the result multi
plied by RJo{KrR) and integrated over the complete 
range of R, the equation for Uy that results is 

dUy 62Uy 
- (l3+(l+a)K2)Uy+ -+a 

= -Rr(x)Fy(x)Jz(KR)b($-i). 

The solution to this equation is 

TT * , ^ ,s r , ̂  e*PC(£-*)A*]exp{-[[l+4a(/3+ (l+«)2P)]W/2a]If-1|} 
Uy=Rr\x)Fy {x)Ja(KR) 

[l+4a(/3+(l+a)#2)]1 / 2 

Therefore, G(x£,R\x,ift) is given by 

G=& exp[( | -?) /2«] £ r(x)Fy(x)Fy(x) 
y 

X f dKKJo(KR)Jo(KR)Zl+4a(fi+(l+a)K2)2-112 

X e x p { - I W + G»+ (l+a)IP)/ay>| {-1'| } . 

By using the integral expression (15), with the source 
term given by (10), and integrating over the complete 
range for x, £ and R the following expression10 is 
obtained for / ° : 

CJffeEB/l+aV' 

4wDvT
2(§)\ a ) 

Xexp[(x0-f)/2a] £ ex°Fy(x0)Fy(x) 
7 

10 This solution is not valid within distances of the order of a 
mean free path or less of the point source. For in this region, 
because the electron density changes by an appreciable fraction 
of itself in a mean free path, If1! is no longer small in comparison 
t o / 0 and the description in terms of just / 0 and f1 breaks down. 

i X / dKKJa(KR)\ 
r l+4a/3 0 -1-1/2 

a) J L4o:(l+a) 

/ l+4a/3 _ 7^\1/V1+aV/2, xe4-w^+xv (—) '*-4 
In this expression C„, which is the normaliza
tion constant for the Maxwell-type distribution, 
exp[-(J?e/(l+a))], is Cv=(mB/2<ir(\+a))W and Dv 

is the diffusion coefficient that corresponds to this 
distribution, i.e., Dv— (l-\-a)/vmB. The convenience in 
expressing the constant in this way will be apparent 
when the far-distant part or lowest mode of this 
complete distribution is discussed below. 

The integration over K can be carried out im
mediately by using the following equation given by 
Watson11 

/ ; 
dKKJ0(KR)(Ks'+ei)-mexpl-(Ki+eiyi!i\x\l 

= (x2+-R2)-1/2 exp[-0(x
2+i22)1/2]. 

11G. N. Watson, Theory of Bessel Functions (Cambridge 
University Press, London, 1952), Chap. 13. 
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The resulting expression for f° is Low-Field Limit 

CJffeEB/l+aV/2rl+« Tm *** l 0 W fiddS a > * "^ f°° h°m ( 1 8 ) b e c o m e s 

ft^-1 ( ) ({—jca^+U? • c r / «-<=„ \ 2 -r1'2 

W(|)V J L / J w^^^rfLl^+fT 
4wD, LA *rd2B/ J 

Xexp[(s0-£)/2a] £ r «*»F7(*)F7(«6) e _ ^ 

r / l+4c0 \1/2 eXfL2kT\ kTeEB/1 
Xexp - ( 

L \ 4 a ( l + a ) / f eEr/ «-e0 \ 2 11/21 

1 + a M1 I 2*rL\ fcTVEZ*/ J I 

X ^ - ^ - ^ - ^ f O H - ^ J J • (17) If the position is far from the source, then 

eEBz»(e-e0)/kT, 
B. Lowest Mode ^ d /o° becomes 

The lowest mode of the distribution corresponds to „ C, / eEz\ 
/ /• Q\ elkT ( 2 1 2 \ I/2 I 1 

the eigenvalue 0=0(7= 1) and to the energy function v/o ; a > 1~7"7Te ^2 " h p ' e x p l ~7^J 

Fo(x) = r»LQM»(x)/NQ=e-*r(i)/No. r e £ n 
Xexp -(22+p2)1/2 . 

This part of the distribution is L 2kT J 

r F R 14- 1/2 ^n ^ s ̂ m u : t n e distribution function agrees with the 
/ n^ yg / ] usual distribution where the density is given by (8) with 
° 4:wDv \ a / D/fx—kT/e, Of course with E^O, the diffusion limit 

results, i.e., 

f~1+V ^ I B . 1 " J ^ (/o(')0^=(a/4TZ)„)(2
2+pr»2exp(-eAr). X<H (£-*0)

2+i?2 exp! 

[ r/g--*o\2 _^_"11 / 21 
Xexpj ^ ^ J 4a( l+a)J J 

Therefore, as was shown by the qualitative discussion 
above, when the electrons are in equilibrium with the 
gas, the effect of gradient terms can be neglected. 

High-Field Limit 

When this is expressed in terms of the variables €, z In this casea<l and /o° from (18) becomes 
and p it becomes 

C veJtL 
(/o°)«<i« e-B<Z(e-eo-eEZy+a(eEPn-^ 

O £ / l + a \ 1 / 2 r a + l / e - e 0 \ 2 T / 2 4irl>, 
4xZ)A a / L a \ l + a / J Xexp[-(B/2o)(«-€0-«£z)] exp{-(B/2a) 

Be -i rB 
X[(e-6o-e£z)z+a(e£p)2]1/2}. (19) 

Now 

(1+a) J L2a\ 1 + a / J [(e-e0-e£z)2+a(e£p)2]1/2 

12 -,1/21 f a / e£p 

i / l + a \ I , 2 r a + l / « - e o V T 

;(—) Lvfc- e &)+ ( e WJ 

and, therefore, /o° can be written as 
It will be shown below that the higher modes decay - . 
exponentially with distance from the source. Therefore, (/o°)«<i 
the lowest mode is the only part of the complete CveE 
distribution that is of interest at far distance from the « e~B*\ €— e0--eEz\-1 

source. To contrast the behavior of this far-distant 47rD„ 
part with the usual distribution as discussed in the v . r , D / 0 s r / z? \ i i i? m 
previous section, it is best to go to the limiting cases n \ / su\ I J ' 
of low and high field. XexpZ-B(eEP)2/4\e-e0-eEz\l, (20) 
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FIG. 1. The ratio of (/°)exact/(/°) appro* versus e/eEz for con
stant collision frequency. The vertical dashed line indicates the 
approximate position of e^/eEz on the horizontal axis. 

where only terms that are independent of a or vary as 
a - 1 are retained. I t should be apparent from (20) that 
the fraction of electrons with e>eo+eEz becomes 
smaller as a decreases while the fraction with e<eo-\-eEz 
is independent of a. Therefore, the limiting form for /0° 
when a is small can be expressed as 

Cve~Be/ e-eoV 
( /o°)«<i=—— 1 — ) 

AwDvz \ eEz / 

Xexp 

when e<eo-{-eEz, and 

-eEBp2/4z\ ( « - -r)~\ (21) 

eEz/J 

( /o 0) a < 1=0, 

when e>eo+eEz. 
This distribution must now be contrasted with usual 

distribution which, in the same limit, is 

(/0)approx=—V-e-*<(z>+p*yi12 

4:TDV 

Xexp{-yEBt(p>+z*yi>-z]}, (22) 

where the density factor is given by (8) with D/p.— 1/eB. 
I t is clear that since (21) cannot be written as a 

function of energy times a function of position, the 
distribution in energy will depend on position. To 
illustrate this new behavior the ratio of (21) to (22) 
is plotted in Fig. 1 as function of e/eEz for various 
values of p/z. In this plot the parameter 3/2eEzB, 
which is shown below to be equal to e^/eEz for on-axis 
points far from the source, is taken to be 0.1. Also, for 

simplicity, the initial energy €o is taken equal to zero. 
This plot indicates that electrons close to the axis have 
a higher average energy than would be expected while 
those sufficiently off axis have a lower average energy. 
Also there are fewer electrons off axis than would have 
been predicted by the usual distribution. 

If the position is far from the source, then the quantity 
e/eEz can be considered small in comparison to unity 
and taking up to first order in this quantity, the distri
bution from (21), with €0=0, becomes 

(/o°)«<i= 
Cy 

4irDvz 
(l+~) exp[-J3e( l+(p /2z) 2 ) ] 
\ eEz/ 

X e x p [ - e E £ p 2 / 4 z ] . 

We immediately see that when e/eEz and (p/z)2 can be 
neglected in comparison to unity, i.e., for positions far 
from the source but very close to the axis, the distri
bution agrees with (22). This agreement is consistent 
with the earlier qualitative considerations. The above 
expression can now be used to obtain approximate 
expressions for the average energy and density. These 

are1' 

and 

3 (1+1/eEBz) 

2B(l+(p/2zY) 

(l+(3/2eEBz)) 

(23) 

4xZ^(l+(p/2s) 2 ) 3 / 2 
e x p [ - i e £ £ s ( p / s ) 2 ] . (24) 

These express, in a quantitative way, the behavior 
displayed in Fig. 1. Again we see that the average 
energy for electrons on axis is larger then would be 
predicted by the usual distribution and by a factor of 
(l+(l/eEBz)). This points out the fact, which was 
not clear from Fig. 1, that for positions far distant from 
the source the average energy of on-axis electrons goes 
to the expected value of 3/2B. Also we see that electrons 
sufficiently off the axis have a lower energy than 
expected. For example, at an angle of 45° (p/z=l) the 
average energy is down by 25%, when the term 1/eEBz 
is neglected. The usual expression for the density around 
a point source, as contained in (22), can be expanded 
in powers of (p/2)2 to be compared most easily with the 
above "exact" expression for the density. Such an 
expansion results in 

W a 
l-h(p/z)2+(l/l€)eEBz(p/zY 

kirDvz 

Xexp 
r eE3fp-\ 

12 These results are not changed significantly if €07*0 or if there 
is a spread to the initial energy. For example, if the initial energy 
distribution «€i/2 exp(—£e), then eav is still given by (23) 
while the density as given by (24) is modified by a factor of 
[ 1 - (P/2a)*]-M(\-3/2eEBz). 
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and the ratio of the densities can then be expressed as 

exact 

V^yapprox 

~(\+\{p/z)2-(\/\6)eEBz{p/zY+{?>/2eEBz)). 

This relationship shows that the density for on-axis 
electrons can be higher than predicted by the usual 
theory, while for electrons sufficiently off axis the 
density can be lower than expected. This is in agreement 
with the behavior shown in Fig. 1. 

The above results would indicate that the average 
electron energy would continue to decrease without 
limit as the position got further and further off the 
geometrical axis. The apparent lack of a lower limit 
to the average energy arises because the results were 
obtained in the limit of very small a. By returning to 
expression for the lowest mode as given in (19), it can be 
shown that for large enough p, such that all2p^>z 
+C(€o— e)/eE~], the limiting mean energy is 3kT. 

A qualitative explanation as to why the "exact" 
theory predicts an average energy that can differ from 
the usual position-independent value of 3/2B can be 
given as follows. The current density at a given point, 
which is made up of the diffusion current plus the drift 
current, is a direct measure of how asymmetric the 
distribution is, i.e., a measure of how many more 
electrons are moving in the direction of the current 
than against it. Now the electrons, as a whole, gain 
energy from the field only because there are more 
electrons moving against the field than with it. In the 
usual theory in setting up the balance between the 
electrons gaining energy from the field and losing 
energy from collisions with the gas atoms it is assumed 
that the contribution to the electrons gaining energy 
from that part of the asymmetry corresponding to the 
diffusion current can be neglected. Therefore, in the 
"exact" theory where the effect of the diffusion part of 
f1 is taken into account, it is clear that when the diffusion 
current adds to the drift current the mean energy will 
be higher and when it subtracts from the drift current 
the mean energy will be lower. These conclusions are 
consistent with the results for the point source geometry, 
for in this case, along the axis the diffusion current aids 
the drift current and it was here that the energy was 
found to be higher, while sufficiently off the axis where 
the diffusion current opposes the drift current the 
energy was found to be lower. 

A higher mode from (17), in the high-field limit and 
for £ <XQ (or e <.eo+eEz), is 

CeEBNo2 

( / T ° ) « < I = e*«F7(xo)Fy(x)(xQ-0-1 

47r£>J2(f) 

X e x p [ - i # 2 ( x 0 - £ ) ] e x p [ - / 3 ( * 0 - £ ) ] . 

When this is written in terms of the variables e, z and p, 
it becomes 

CveEN0
2 

(fy°)a<i= eB^Fy(Beo)Fy(Be)(eEz-e+eo)-1 

47r£>,r2(§) 

Xexp(-peEBz) exp[/3J3(€-eo)] 

r eEBp2 ~| 
Xexp . 

L 4(«E2-€+€o)J 

I t is evident that the higher modes have a decaying 
exponential in z. From the eigenvalue spectrum given 
above for 7, it is seen that the characteristic distance 
for the first mode above the fundamental is 

l/pieEB=4.9/eEB. 

Therefore a distance of the order of 1/eEB must be 
reached before the lowest mode becomes the most 
important term. This explains why the discussion of the 
lowest mode as representing the far-distant distribution 
was carried out for z> 1/eEB. 

IV. CONSTANT CROSS SECTION 

The equation that / ° must satisfy for a constant 
cross-section gas is6 

lar / df\ eM /df 1 d/0\n 
eHf+kT— )+—(eE\yl—+ ) 

edeL \ de/ 6m \de eE dz / J 

M d2f° MX2 M\S(t,e) 
+—eE\2 + v 7 ° = , (25) 

6m dedz 6m 2{2me)l}2 

with X= 1/iW, where N is the gas density and a, is the 
momentum transfer cross section. This e uation could 
not be converted to a separable form by a change to 
new independent variables as was possible in the con
stant v case. However, when the equation is taken to the 
high-field limit, then such a conversion can be made 
and, of course, in the zero-field limit it is directly 
separable. These two limits will therefore be presented 
as separate problems. 

A. Zero-Field Limit 

i a r / a/°\-i M\2 XMS 
- - e2lf+kT— 1 + V2 /°= . 
edeL V de/J 6m 2(2me)112 

This is to be solved with the source function, Sy given 
by (10). The complete distribution function for this 
case is obtained by the same procedure as was used 

C Higher Modes ^ n ^ s limit the equation for f° is 
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with constant v and is 

Co 
/ o = _ £ e^Fteo/mFiie/k^tf+p*)-112 

ArDo fr-o 
r \/6lm\lt2 I 

Xexp — I J (z2+P
2y2 . 

J A M E S H . P A R K E R , J R . 

changing to new dimensionless variables given by 

y=(Ae)\ 

and 

(26) i)=2eEAp, 

where 4 = (l/e£X)(3w/M)1 /2 , the equation becomes 

The energy eigenfunction, Fi(u), are solutions to the 
separated energy equation 

d2F dF 

u—+ (2+u)—+ (2+0*"= 0, 

d 

dy\ 
y(f°+~-)\+y1,2~~+—(n—) 

\ dy / A d£ r]d7i\ drj / 

du2 du 

where u= e/kT. These functions are discrete and given 
by 

Fl(u) = e-uLlV(u)/Ni, 

with / = 0 , 1, 2 - " o o . Ni, which is the normalization 
constant for the density function r(u) = ueu, is given by 

^2=(l+/)r2(/+2). 

The constant in front is expressed in terms of Co, the 
normalization constant for the Maxwell distribution 
e-elkT 

Co=( ) 
YlirkT/ 

and in terms of D0j the corresponding diffusion coeffi
cient, given by Do=(2\/3)(2kT/mir)112. The lowest 
mode from (26) is of the expected form 

(C0/^D0)e~^kT(p2+z2)^2. 

The higher modes decay exponentially with distance 
from the source with the characteristic length of 

/ M y/2 

\6lm) 

B. High-Field Limit 

In Eq. (25), for the limit of high field, the term 
representing electrons gaining energy from collisions 
with the gas atoms can be neglected and the resulting 
equation is 

/A^MXS 

\2m) \f^ ' 

This is now in a separable form. The formal solution 
to this equation, which can be obtained by the same 
procedure that was used for constant collision fre
quency, is 

CaeEA r 
/ ° = — Z / dKKJ»{Kyj)ey<>Fl{K\y<>)Fl(K\y) 

X e x p [ - ^ ( 2 V / 2 - r ) ] 
TTD, 

for 2y0
ll2> f and equal to zero for 2y0

112 <J*. The constant 
Cff is the usual normalization constant for the 
Druyvesteyn energy function, exp[— (Ae)22, and is 

1 /mA\*'2 

'~dre)\~7/ ' 
and Da is the corresponding diffusion coefficient 

X / 2 V ' 2 

D. 
3r(f) Vj\mA/ 

1 d {V +—(eE\)2( —+- — ) 
\de eEdz/A) 

M 
[ 

6m 

MeE\2d2f MX2 

6m dedz 6m 
V2/°= 

MAS 

2(2me) 1/2 

I t is clear that because of the mixed derivatives in e 
and z the equation cannot be separated. However, by 

The functions Fi(K2,y) are the eigenf unctions of the 
separated energy equation, 

d2Fi dFi 
y + ( l + } 0 — + (1 ~K2+f i2<pi)Ft= 0 , 

dy2 dy 

with corresponding eigenvalues (fi{K2). The density 
function for this equation is yll2ey. 

Because the behavior of this equation near its 
irregular singular point at y= co requires a more 
complicated solution than the usual exponential,13 the 
exact analytic form of the solutions could not be 
obtained. However, an approximate expression for the 
lowest eigenfunction can be obtained by a perturbation 
calculation, in a form which is appropriate for expressing 
the far-distant behavior of the distribution function. 
The far-distant mode of the complete distribution is 

1S E. L. Ince, Ordinary Differential Equations (Dover Publi
cations, Inc., New York, 1944), Chap. XVII. 
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given by a power series in K?, i.e., 

CceEA r Fo(K*,y)=Fom+K*F0v+KiF0™+ ••-, 
/o°= e"»/ dKKJo(Kv)Fo(K2,yo)Fo(K\y) and 

*D, Jo <p0(K*)=<fio«»+KW1)+KW2)+---. 
XexpC- (2y 2 - f ) ^oJ . 

When these are inserted into the above integral, /o° 
We will consider that F0 and <po can be expanded into becomes 

C„eEA r 
/o°= e™ I dKKJo(Kv)(.Fo^(yo)+K2F0^(y0)+ • • •)(F0«»(y)+K2F°a)(y)+ • • •) e x p C - i ^ y / s - f W 0 ] 

wD* Jo 

Xexp[ - ( 2 V ' 2 - f ) ^ o ( 0 ) ] ( l - ^ 4 ( 2 V 2 - f ) ^ ( 2 ) + - • • ) ( l - ^ 6 ( 2 V 2 - D * ' o ( 3 ) + - • • ) • • • • 

These series can now be multiplied out and /0
0 can then be expressed as 

CeEA r" 
/o° = e*° exp [ - (2V 2 - f )^ 0

( 0 ) ] / dKKJ0(Kv)go(l+K*g1+Kig2+ • • •) e x p [ - p y - f l X ^ O ) ] , (27) 
where the g functions are given by 

go=FQM(y0)FQM(y), 

Foa)(yo) Fo^(y) 

Fo(0)(yo) Fo^(y) 

FQ™(y) Fo^(yo) F0v(y)Foa)(yo) 
- ( 2 3 ; 1 / 2 - f ) ^ ( 2 )

3 e t c . 

I dKK^+UoiKrj) e x p [ - Z 2 0 ] = -
Jo 

Equation (27) can then be integrated term by term using the following Bessel integral formula given by Watson,11 

exp[~7?
2/46>]Ln(0)(^2/46') 

' o 26n+1 

The expression for /o° becomes 

CaeEAe** e x p [ - ( 2 y 0
1 / 2 - f W 0 ) ] e x p [ - ^ / 4 ( 2 y 0

1 / 2 - r ) ^ o ( 1 ) ] 

2TD, (2y0
1 / 2-r)^o ( 1 ) 

f giLi (0)fe2/4(2y0
1/2-f)^o (1)) ^2 (0 )(7?2/4(2yo1 /2-f)^o (1 )) 1 

Xgo 1 + + + • • • . (28) 
t (2y0

1/2»r)^o (1) (2yo1/2™f)2(^o(1))2 1 

If the region of interest is restricted to points that are Thus, knowing FQ to first order in K2 and cpo to second 
far distant from the source but close to the axis, then order in K2 results in an expression for f° that is valid 
the quantities (p/z)2, e/eEz, and 1/eEAz can be con- near the axis [first order in {p/z)2~] and at far distances 
sidered small in comparison to unity. When the Laguerre from the source (first order in 1/eEAz). 
polynomials are expanded in (28) and it is recalled that In the Appendix, FQ and <po are obtained by a pertur-
(2y0

1/2—f) when expressed in terms of e and z is given by bation calculation up to first and second order in K2, 
n 1/2 y\ _ 9 7? A n _ ( _ \/ 7? 1 respectively. From these results the g functions and the 
(2yo - f t - l e & t A l l {* eo)/e2aj, expansion coefficients for <pQ can be obtained as 

then the terms that are first order in the above small . 
quantities can be picked out. Therefore, the most ^—\/^)e > 
important terms in the bracket are 

r 1 1 / P \ 2 1 
gL2eEAz<p*v 4(c>o(1))2W J 

^ 0 ( 2 ) n=0 
gi=-T,an(Ln«»(yo)+Ln«»(y)), 

-2eEAz<p0v 4(<p0
(1))2W J (<p0

(l))2eEAz <p0
(0) = 0 

and 
W 2 ) / P \ 2 <Po™eEAz/p\* 1 ^0

(1) = 2/V/2 , 

(*>o(1))3W 8(^0
(1 ))4 \z) " I ' ^o(2) = - 2 ^ / ^ . 
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Values for an, for n up to four, are given in Table I I of 
the Appendix. 

Therefore, /o° can be expressed in terms of «, z and p as 

C „ e x p [ - ( ^ e ) 2 ] 
/ o o = ( i _ ( e _ € 0 ) /e£ z ) - i 

brDcZ 

r TweEAP
2 l 

Xexp 
L 4 z ( l - ( « - e 0 ) / e E z ) J 

L V 4 x / 64 

e£zvl\ 2 x1 '2/ J 
(29) 

I t is immediately obvious that for points very near the 
axis but at far distance from the source, the expression 
reduces to the usual approximate form taken to this 
same limit, i.e., 

(C9/4nD0z) e x p [ - (Ae)2~] exp 
L 4Dz _ 

where n/D=Tl(2eA. 
For points off the axis it is more difficult in this case 

to compare (29) with the approximate f° than it was 
for the case of constant collision frequency. However, 
expressions can be obtained for the average energy, 
eav, and for the density, n, which can be compared with 
those from the approximate f°. These expressions are 

and 

n~ (AirDaz)~ 

r (5 /4 ) l 

' r ( 3 / 4 ) A [-• 198(p/s)2-
0.410 

eEAz-
1 

r 0.39 i 
X l -0 .204(p / s ) 2 + +0.023eEAz(p/zY 

L eEAz J 

WeEAp2-] r Tir'eEAp'-\ 

L 4s J 
Xexp 

The integrals involving the gi function were evaluated 
by using the generating function for the Laguerre 
polynomials.9 The numerical constants in these expres
sions are accurate to a few percent. As in the constant 
collision frequency case the initial energy e0 was taken 
to be zero. I t is to be noted that €av goes to the expected 
value of ( r ( 5 / 4 ) / r (3/4)^4) for points very close to the 
axis but far from the source. Also it is apparent from 
the comparison of these relationships with those 
obtained for constant collision frequency, which are 
given by (23) and (24), that the qualitative discussion 
and conclusions for the case of constant-collision 
frequency will apply directly to the constant cross-
section case. 

VI. TOWNSEND-TYPE D/y. EXPERIMENT 

The theory as developed above has demonstrated 
that in general it is not correct to ascribe to electrons 
moving through a gas a distribution in energy that is 
independent of position. In turn this implies that such 
electrons are not characterized by a unique diffusion 
coefficient and mobility. However, the assumption of a 
unique D and p, does form the basis for the usual 
interpretation of the Townsend-type D/p experiment.1'2 

Therefore, this type of experiment will be re-examined 
in terms of the above theory to find if, under the 
conditions of the actual experiments, appreciable errors 
are introduced by using the usual interpretation. While 
it is recognized that the above theory does not take 
into account the effect of electrode boundaries or of 
inelastic processes in the gas, both of which are im
portant for an accurate description of the experiments 
as actually carried out, still the essential features of the 
D/JJL experiment are represented by the point source in a 
gas in which only elastic collisions take place. I t is 
therefore reasonable to suppose that the theory will 
give at least an estimate of the errors involved. 

When the distribution in energy is assumed to be 
independent of position for a constant collision fre
quency gas, the expression for the density normalized 
with respect to the value on axis can be obtained from 
(8). This density ratio, which will be denoted by N, 
is given by 

W a p p r o x = ( l + ( p A ) 2 ) - 1 / 2 

X e x p { - | e £ ^ [ ( l + ( p A ) 2 ) 1 / 2 - l ] } « 

This ratio could just as well be expressed in terms of 
D/p where D/p= 1/eB. This expression is taken for the 
high-field limit since it has been shown earlier that the 
usual expression for the density is only in error when 
the average electron energy is large in comparison to 
thermal energies. I t is clear that if the ratio of the 
density at some point off axis to the density on axis is 
measured, i.e., if the density ratio is measured, then B 
(or D/p) can be calculated.14 

The more accurate description of this experimental 
situation has shown that while the density ratio is still 
given by the above expression for points very close to 
the axis, a more correct expression for points further 
off the axis is 

W e x a c t = [ i + K p A ) 2 ] - 3 / 2 e X P C ~ i ^ ^ ( p A ) 2 ] . 

These expressions can most easily be contrasted by 
expanding each in powers of (p/z)2 up to the point that 
their difference is apparent. This results in 

( i \0aPPros= (l-Up/zY+&eEBz(p/Zy) 

Xexpl-ieEBz(p/z)^7 (30) 
14 In an actual Townsend experiment a current ratio is measured 

and not a density ratio. However, since under most conditions the 
mobility current represents the majority of the measured current, 
the above description in terms of a density ratio is sufficiently 
accurate for the present purpose. 
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TABLE I. Maximum fractional difference in n and D/tx. 

ixEz/D &>/*)« (*»/»)(%) l*(D/A/{D/n)]<%) 

50-500 (Long tube) 

2-10 (Short tube) 

0.005 
0.02 
0.24 
0.9 

0.3 
5 

15 
100 

0.1 
0.5 
8 

22 

and in 

(i\0e*act= ( 1 - K P A ) 2 ) exp[-ie££2(pA)2] . (3D 

Typical experimental values for (p/z) and eEBz 
(=p,Ez/D), which are also representative of previous 
measurements,1 can be obtained from the recent work 
of R. W. Warren and the author.2 In these measurements 
the two experimental tubes that were used differed in z, 
the distance from the source to the plane of measure
ment, and in (p/z). Table I gives the range of pEz/D 
covered in these measurements along with the values 
of (p/z)2 (two values per tube) for each of the two tubes. 
Also given in Table I is the maximum fractional 
difference in N, i.e., 

8N (N) approx (N) exact 

N Wapprox 

as calculated from (30) and (31) for each (p/z)2. These 
figures show that for a given value of eEBz the density-
ratio as predicted by the two different theories can 
differ appreciably for typical experimental conditions. 

However, the important question is how different is 
the value of jxE/D as predicted by the two theories for 
a given N. An expression for the fractional difference 
in D/n (or 1/eB) for a given N can be obtained by 
using (30) and (31). This is given by 

(D/ix\ •iP/y). 

(D/fx)a 

b{D y) r l 
= — « -(p/s)2/ln| 

D/n L_8 Qh ( P A ) 2 -

This can be expressed as 

d(D/p) 1 D 

D/n 2 ixEz 
-1G>/*)S 

where ln(l/iV) has been replaced by (p,Ez/4D)(p/z)2. 
Table I gives the maximum value that this fractional 
difference can attain. It is clear from these figures that 
while the fractional difference in D/n is not as large as 
in N, still the difference of the order 20% corresponding 
to the largest value of (p/z)2 should be experimentally 
observable. In the course of the measurements described 
in Ref. 2, certain inconsistencies did arise using the 
conventional interpretation of this experiment. How

ever, these inconsistencies, which were eventually 
resolved by an empirical approach, could not be 
explained, even qualitatively, by the results of the 
present theoretical investigation. Therefore it would 
appear that in most cases the experiments have not 
been appreciably affected by using the usual interpre
tation of this experiment and in the cases where (p/z)2 

was large enough for appreciable deviations to exist, 
such deviations were masked by other effects. 

ACKNOWLEDGMENTS 

The author wishes to thank A. V. Phelps and R. W. 
Warren for many helpful discussions. 

APPENDIX: LOWEST MODE ENERGY 
FUNCTION OF CONSTANT or 

The energy differential equation for this case is 

d2F dF 
y—+(l+y)—+ (l-K2+y1'2<p)F=0. 

dy2 dy 

Making the transformation 

F(y) = e-yh(y), 

the equation becomes 

dh dh 
y—+(l-y)—+(y^2<p-K2)h=0. 
dy dy 

(Al) 

We want to obtain the first few terms of a power series 
expansion in K2 for <po and ho, the lowest eigenvalue and 
eigenfunction for this equation. That is, we want to 
find the first few terms in 

and in 
Ao=Ao(0)+2P*oa>+JC4AoC2)+- • • 

^ 0 = = ^ 0 ( 0 ) + ^ 2 ^ 0 ( l ) + Z 4 ^ 0 ( 2 ) + . (Al) 

Here we have considered <po to be the eigenvalue 
which is a function of K2. However, in the actual 
calculation of above terms it is more convenient to 
reverse this viewpoint and to consider K2 the eigenvalue 
which is a function of <p and then to consider the term 
(y1,2<p) in (Al) as a perturbation. It is convenient to 
put (Al) into a standard quantum-mechanical form15 

so that the usual perturbation formulas can be used. 
Eq. (Al) can then be expressed as 

Ho\f/o+ <pZ7tyo= Wô o, 
where 

d2 

and 

H0-

W--

^ 0 = 

= y 
dy2 

=y112, 

= Ao, 

WQ-

K i -

=KK 

dy 

15 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), Chap 7. 
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When <p is equal to zero, the complete set of discrete, T A B L E H. Constants for the perturbation calculation. 
orthonormal eigenfunctions are9 ' 

0 
1 
2 
3 
4 

1 
- 1 / 2 
- 1 / 8 
- 3 / 4 8 
-15/384 

«0.259 
1/2 
1/32 
1/288 
5/12 288 

Un=Ln«»(y)/nl, 

where Ln
m is a Laguerre polynomial with correspond

ing eigenvalues of 

£ n = 0 , - 1 , - 2 , »• • • - oo . (A2) - = 

These functions are orthogonal with respect to the be written m terms of # 2 as 
density function erv. 2 * 

Using the usual perturbation formulas, ^0 and w0, &0^ ( V * " ) 1 4 ( 1 ~ ^ 2 Z, 0*£n ° OO), 
to second order in perturbation theory, are16 
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and 
(i?*/)* <?o= (2/7T1/2)Z2(l-Z2a0). 

n=i En ' The constants an can be expressed in terms of Eno as 
and 
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n=l _En ?T n=l % 

and 
where we have explicitly put E 0 = 0 and with Hno % |<fl»o'| 

g-nby a " = ^ - ^ T f°r ^ 
n0 ~ J y o n y - Values for an are given in Table I I for n up to four. In 

summary, the expansion coefficients for ho and <po are 
The value of Hno can be evaluated with the help of the 
generating function for the Laguerre polynomials9 and 
this quantity is tabulated in Table I I for n up to four. 

We can now turn around and obtain <po(w) and 
^o(w) and these relations are / 4 \ 1 / 4 
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The function \po which is normalized with respect to <po<2)=: . 
ery is now renormalized to yll2e~y. Then ^o and &o can T1 /2 


